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ABSTRACT

The forward and inverse process of seismic migration and
demigration or remodeling has many useful applications in
seismic data processing. We evaluated a method to reobtain
the seismic reflection data after migration, by inverting the
common image point gathers produced by reverse-time mi-
gration (RTM) with an extended-imaging condition. This
provided a transformation of the results of seismic data
processing in the image domain back to the data domain.
To be able to reconstruct the data with high fidelity, we
set up demigration as a least-squares inverse problem and
we solved it iteratively using a steepest-descent method. Be-
cause we used an extended-imaging condition, the method is
not dependent on an accurate estimate of the migration-
velocity field, and it is able to accurately reconstruct both
primaries and multiples. At the same time, because the
method is based on RTM, it can accurately handle seismic
reflection data acquired over complex geologic media.
Numerical results showed the feasibility of the method
and highlighted some of its applications on 2D synthetic
and field data sets.

INTRODUCTION

The motivation behind this work was to obtain a method to re-
construct seismic reflection data from common image point gathers
(CIGs) constructed with reverse time migration (RTM). The method
should work without the need for an accurate velocity model, and
the reconstructed data should have an acceptably small error in am-
plitude and phase. This would ultimately allow us to process data in
the migrated domain, which can be an advantage in the case of seis-
mic data acquired over complex geologic media.
Most classical seismic data processing methods in the data do-

main are based on simplified assumptions about the subsurface

structure, such as horizontal layering and mild lateral variations
in mechanical properties. Over such media, reflection data can
be described by simple equations such as hyperbolas. However,
complex geologic media will cause complicated waveforms as seis-
mic waves propagate through them. As the medium deviates from
the simple models, the complexity of the reflection data increases
and the classical seismic data processing methods start to fail. This
calls for special treatment of complex data, which substantially
complicates seismic data processing. On the other hand, the image
domain allows unified treatment of data acquired over simple and
complex media because the effects of the medium on the kinematics
of wave propagation are largely removed by the process of back
propagation, which is inherent to the migration procedure. This
characteristic makes the image domain a powerful alternative to
the data domain for seismic data processing. A challenge in design-
ing seismic data processing methods in the image domain is the
need for an accurate estimate of the migration velocities. In this
work, we show how we can relax this requirement. We also show
how we can, through demigration, transform the results of seismic
data processing in the image domain back to the data domain.
Demigration methods have a long history in seismic data process-

ing. Loewenthal et al. (1976) introduce the concept of the exploding
reflector model, showing how to obtain zero-offset seismic data
from a migrated stack using a background velocity model and wave
theoretical methods. The Kirchhoff integral and the high-frequency
approximation have also been used for reconstruction of seismic
data from migrated images (Jaramillo and Bleistein, 1999; Santos
et al., 2000; Miranda, 2006). More recently, RTM has been used to
recreate data from seismic images with the purpose of velocity
analysis (Chauris and Benjemaa, 2010) and multiple attenuation
(Zhang and Duan, 2012).
In their work, Chauris and Benjemaa (2010) use the concept of

the extended imaging condition (Sava and Vasconcelos, 2011) in a
migration/demigration scheme. The advantage of the extended im-
aging condition over the classical crosscorrelation imaging condi-
tion (Claerbout, 1971), is that it preserves the phase and angle
dependent amplitude information of the data in the migrated image,
even in the case of migration with an inaccurate velocity model.

Manuscript received by the Editor 24 June 2013; revised manuscript received 12 November 2013; published online 22 May 2014.
1Norwegian University of Science and Technology, Institute for Petroleum Technology and Applied Geophysics, Trondheim, Norway. E-mail: wiktor

.weibull@ntnu.no; borge.arntsen@ntnu.no.
© 2014 Society of Exploration Geophysicists. All rights reserved.

WA97

GEOPHYSICS, VOL. 79, NO. 3 (MAY-JUNE 2014); P. WA97–WA105, 15 FIGS.
10.1190/GEO2013-0232.1

D
ow

nl
oa

de
d 

05
/2

7/
14

 to
 1

29
.2

41
.2

7.
39

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



This is because when there are significant inaccuracies in the veloc-
ity model, or the data are contaminated by multiple reflections, a
substantial amount of reflection energy is mapped outside of the
zero-lag crosscorrelation during imaging. All reflection energy
can be preserved in the image if the imaging condition is extended
to a lagged crosscorrelation (Sava and Vasconcelos, 2011). Thus,
when the reflection data are contaminated by the presence of multi-
ple scattering, and when the migration velocity is inaccurate, the
extended image has the potential to allow better linearized remod-
eling of the reflection data than a nonextended reflectivity model
(Symes, 2008). Here, we explore this fact and use extended images
to set up a demigration method in which we reconstruct the prestack
seismic reflection data from the migrated image by minimizing a
least-squares function.
The method we present is intimately related to the least-squares

migration (LSM) method (Nemeth et al., 1999), if we note that LSM
can also be formulated using extended images. The main difference
between LSM and the proposed demigration procedure is in the
organization of the inversion. Whereas the aim of LSM is to obtain
an optimal reflectivity model of the subsurface, the aim of our
method is to optimally remodel the data from the migrated image,
in particular after some processing has been applied to it. This
means that in LSM, remodeling is carried out using a Born forward
modeling operator, whereas the image is obtained by solving a linear
least-squares inverse problem, which aims at minimizing the differ-
ence between the observed data and the data remodeled from the
image. On the other hand, in the proposed demigration, the migra-
tion step is done using the adjoint of a Born forward modeling op-
erator (Claerbout, 1992), whereas the remodeling is carried out by
solving a linear least-squares inverse problem, to be described later.
In this regard, the proposed method is exactly the converse of LSM.
Numerical experiments show that our demigration procedure is

robust and fast, in the sense that it does not require many iterations
to adequately remodel the data, even when using a simple optimi-
zation scheme such as the steepest-descent method, and a relatively
inaccurate migration velocity model. The 2D synthetic and field
data examples highlight some applications of demigration, such
as data interpolation and multiple attenuation.

METHOD

The main purpose of the method is to be able to reconstruct seis-
mic data from modified CIGs constructed using RTM with an ex-
tended imaging condition (Sava and Vasconcelos, 2011). In the
extended imaging condition, instead of the classical crosscorrela-
tion of the source and receiver wavefields at the imaging point
(Claerbout, 1971), CIGs are constructed by crosscorrelating the
source and receiver wavefields at symmetric lags around the imag-
ing point. These crosscorrelation lags can be either spatial (Rickett
and Sava, 2002) or temporal lags (Sava and Fomel, 2006). The im-
portant point is that, different from the classical imaging condition,
the extended imaging condition preserves the kinematic and angle-
dependent information of the data in the image, even in the case of
migration with an inaccurate velocity model. This property is of
fundamental importance because, in practice, the data are never sin-
gle scattering, and the migration velocity model can never be known
exactly.
In principle, any prestack image gather, such as the shot or angle

gathers, can be used to reconstruct the prestack seismic reflec-
tion data. Here, we show how we can use the extended imaging

condition to set up a demigration method. We demonstrate the
method using a time-domain implementation of RTM with a
space-lag crosscorrelation imaging condition (Rickett and Sava,
2002):

R0ðx; hÞ ¼
Z

ds
Z

dtWsðx − h; t; sÞ
Z

dx 0

×
Z

dt 0Gðxþ h; t; x 0; t 0ÞP0ðx 0; T − t 0; sÞ; (1)

where R0 are CIGs (extended image), x ¼ ðx; y; zÞ are the spatial
coordinates, h ¼ ðhx; hy; hzÞ are half spatial lags, t is the time, T is
the final recording time, s is the source index,Ws are source wave-
fields, G is the acoustic Green’s function, and P0ðx 0; t 0; sÞ are
common shot gathers. Note that the summation over t 0 is equivalent
to a time convolution and that the data used in migration is time
reversed.
The source wavefields are given by

Wsðx; t; sÞ ¼
Z

dx 0
Z

dt 0Gðx; t; x 0; t 0ÞSðx 0; t 0; sÞ; (2)

where S are source functions.
Although here we develop the theory using a complete set of half

spatial lags (hx, hy, and hz), in most cases it is sufficient to only use
a subset of these. For the numerical examples contained in this pa-
per, we only use the horizontal spatial lags, which are most sensitive
to waves propagating at near-vertical angles. However, in cases
where significant reflection energy turns horizontal, it might be im-
portant to incorporate the vertical spatial lags (hz) (Biondi and
Shan, 2002).
Assume now that we have the CIGs (R0) and we would like to

obtain the data (P0); that is, we are interested in the inverse pro-
cedure of equation 1. One approach is to apply the adjoint of mi-
gration, which, for the extended imaging condition, can be written
as (Weibull and Arntsen, 2013)

Pðx; t; sÞ ¼
Z

dx 0
Z

dt 0Gðx; t;x 0; t 0Þ
Z

dh
∂2R0

∂z2
ðx 0 − h;hÞ

×Wsðx 0 − 2h; t 0; sÞ: (3)

This equation is successfully used byWeibull and Arntsen (2013)
to reconstruct seismic data from muted CIGs. A similar equation is
used by Chauris and Benjemaa (2010) for velocity analysis. One
problem with this modeling equation is that, even if it properly re-
creates the kinematics, it gives the wrong amplitudes for the data.
Another approach, as proposed by this paper, is to cast the problem
as a least-squares inversion of the following objective function:

J ¼ 1

2

Z
dx

Z
dh

�
∂
∂z

½FR0ðx; hÞ� − ∂R
∂z

ðx; hÞ
�

2

; (4)

where R0 is the extended image CIGs that are migrated from the
observed shot gathers P0 using RTM; R is the forward mapped
CIGs, computed using the same equation (equation 1) and the same
source wavefieldsWs, but with the unknown/predicted shot gathers
P; andF is an operator, such as muting or filtering that modifiesR0

prior to demigration. The vertical spatial derivatives in equation 4
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are used to remove well-known artifacts from RTM images (Guitton
et al., 2007).
By minimizing this objective function (equation 4), we seek to

find the data that, when migrated and first-order derivated in the
z-direction, will approximate the image ∂

∂z ðFR0Þ in a least-squares
sense. In principle, because of the linear relationship between
the data and the receiver wavefields, the problem is linear and
its solution can be sought explicitly. The problem is that the data
we are trying to estimate consist ofNsNrNt parameters, whereNs is
the number of sources, Nr is the number of receivers, and Nt is the
number of time samples. Due to the large number of parameters, we
deem an explicit solution to be too computationally expensive. For
the same reason, we also avoid methods based on an iterative sol-
ution of the normal equations. Instead, here we choose to solve the
proposed least-squares problem using an out-of-core implementa-
tion of the steepest-descent method (Nocedal and Wright, 2000).
The out-of-core solution means that all optimization operations
are carried out on disk. This removes the need to store the parameter
vector in memory, and it allows optimization of data sets of virtually
any size. In the steepest-descent method, the demigrated shot gath-
ers are updated iteratively according to

Piþ1ðx; t; sÞ ¼ Piðx; t; sÞ − αi
∂J
∂Pi

ðx; t; sÞ; (5)

where i ∈ ð1; : : : ; NÞ is the iteration index, αi is a positive step
length, and ∂J ∕∂Pi is given by

∂J
∂Pi

ðx; t;sÞ¼
Z

dx 0
Z

dt 0Gðx;t;x 0; t 0Þ
Z

dh
∂2ΔRi

∂z2
ðx 0−h;hÞ

×Wsðx 0−2h; t 0;sÞ; (6)

with the image residual ΔRi being given by

ΔRiðx; hÞ ¼ FR0ðx; hÞ −
Z

ds
Z

dtWsðx − h; t; sÞ

×
Z

dx 0
Z

dt 0Gðxþ h; t; x 0; t 0Þ

× Piðx 0; t 0; sÞ: (7)

In deriving equation 6, we used the fact that ∫ dz ∂R
∂z

∂R
∂z ≈

−∫ dz ∂2R
∂z2 R. This explains the origin of the second-order vertical

derivatives. The necessary boundary conditions for computing
the gradient (∂J ∕∂Pi) are the same as those used in migration; that
is, the quantities to the right of the Green’s functions are inserted as
sources in the solution of the acoustic wave equation. Absorbing
boundary conditions are used to avoid reflections from the boun-
daries of the numerical grids. Finally, we assume an initial state
of rest, with ∂J

∂Pi
ðx; 0; sÞ ¼ 0 at time zero.

The organization of the demigration algorithm is shown in
Figure 1. First, the original reflection data P0 are migrated using
equation 1 and are subject to an arbitrary processing operation rep-
resented by the operator F. The data are then reconstructed itera-
tively using the steepest-descent algorithm. The optimization
requires an initial estimate of the data (Pinit). In practice, the initial
data can be the original data or zero. In the case that the original data
are used (our example 3), the effects of processing in the image
domain will be iteratively transferred to the original data. This is
the best option if the phase and amplitude characteristics of the
original data are to be optimally preserved. Another option is to
fully rely on the migrated image (FR0) to estimate the data; in this
case, the initial data are set to zeros with the desired geometry in-
formation (our examples 1 and 2). This option can be useful if the
demigration is to be used to simulate a different geometry than the
original data, such as in illumination studies or in data interpolation.
Independent of the choice of the initial data, at each iteration of
steepest descent, a migration and a gradient computation must
be performed. These procedures are performed using equations 1
and 6, respectively. The source-side wavefields Ws are computed
only once and stored on disk because they are independent of
the data, and the migration velocities are the same as those used
to migrate the original data. Once the objective function is evaluated
and the gradient is computed, the data P can be updated according
to equation 5, where the step length α is computed using a line-
search method (Nocedal and Wright, 2000). After a predetermined
number of iterations has been run, or if the objective function error
is small enough, the reconstructed data Popt are returned.

NUMERICAL EXAMPLES

We illustrate the method with some 2D seismic examples. The
first two examples are based on the Marmousi model (Versteeg,
1993), which has become a benchmark model for complex geology.
This model, shown in Figure 2, is used to generate seismic data
using a finite-difference modeling code (Virieux, 1986). We use
a monopole point source and Ricker wavelet with dominant fre-
quency of 20 Hz. We use absorbing boundary conditions on all
sides to simulate data without free-surface-related multiples. The
source spacing and the receiver spacing are both 0.025 km. The shot
gathers have a minimum offset of 0 km and a maximum offset
of 5 km.
In the last example, we explore the application of demigration to

field data. The data consist of a 2D marine seismic line acquired

Figure 1. Demigration organization flowchart. In this diagram, P0

represents the original data, Pinit are the initial data, and Popt are the
optimal reconstructed data.
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over the Norwegian North Sea. There are 460 shot gathers, each
with a minimum offset of 0.075 km and a maximum offset of
1.25 km. The source and receiver spacing is 0.0125 km. The dom-
inant frequency of the data is ≈30 Hz, and the maximum frequency
is ≈80 Hz.

Example 1

In the first example, we show the ability of the method to recon-
struct the seismic prestack data from stacked migrated CIGs. In this
procedure, the CIGs that are input for demigration are the CIGs that
are output from RTM with the original data, without any processing
applied to it.
The purpose is to illustrate the ability of the method to reconstruct

the seismic data from the migrated CIGs, even in the case that the
migration velocity model has significant errors.
The migration velocity model, shown in Figure 3, is a strongly

smoothed version of the true velocity model. We discretized the mi-
gration velocity model using a grid cell size of 0.0125 × 0.0125 km
in the x- and z-directions, and we use it for the forward- and reverse-
time modeling steps needed for migration. The maximum time used
in modeling is 4 s. The time-step size is limited by numerical sta-
bility criteria (Virieux, 1986) and is chosen to be 0.8 ms, but the
wavefields needed for the imaging condition are sampled every
4 ms. As the source functions, we use monopole point sources with
a 20-Hz dominant frequency Ricker wavelet.
The amount of lag used in the extended imaging condition is a

very important parameter for the proposed demigration method.

Ideally, the size of the half-offset vector must be chosen such that
most, if not all, of the energy is contained in the image. Otherwise,
important information might not be available for demigration and
will thus lead to some loss of reflection data. The choice of the num-
ber of subsurface offset lags needed in the crosscorrelation depends
on the accuracy of the migration velocity model. The farther the
model is from the correct model, the farther away from zero lag
will the energy be migrated into, and the larger the half-offset vector
needs to be. Another important consideration is whether the data are
single scattering or if they contain multiple reflections. Due to the
linear model inherent to migration (single scattering Born approxi-
mation), all events in the data, including multiples, are treated as if
they were primary reflections. Because primaries and multiples
have conflicting moveouts (free-surface-related multiples generally
require lower migration velocities to focus), even for accurate mi-
gration velocities (for primaries), significant multiple energy will be
mapped to nonzero half-offset lags (Mulder and van Leeuwen,
2008). To preserve this multiple energy, it is therefore necessary
to have the proper amount of lag in the extended imaging condition.
The half-offset sampling interval is the same as the spatial sam-

pling interval of the wavefields. In this example, we use 251 hori-
zontal half-offset lags in the crosscorrelation, which produces a
half-offset vector ranging between –1.56 and 1.56 km. Aliasing ef-
fects due to coarse sampling of the half-offset vector are not con-
sidered in the current study. However, in the case that aliasing
effects turn to be a problem, the sampling interval can be halved
by only shifting one of the wavefields in the imaging condition
(Rickett and Sava, 2002).
The migrated stacked image (zero-lag) and a collection of CIGs

are shown in Figure 4. As expected, because the migration velocity
model is nonoptimal, the zero-lag image is not well focused, and
significant energy is spread out over the subsurface nonzero
half-offset lags. Yet, most energy is preserved within the center
of the CIGs, tapering off toward the edges. This implies that the
choice of 251 half-offset lags is large enough as to preserve the re-
flection energy from the data into the migrated image.
In demigration, the initial shot gathers are a collection of zeroed

traces. This means that we fully rely on the CIGs to reconstruct the
reflection data. Figure 5 shows a comparison of a particular shot
gather at source position 7.83 km of the original data with the result
of demigration of the CIGs after one iteration and after nine iter-
ations of demigration. In this comparison, the reconstructed shot
gathers were scaled by an optimal scalar constant. This constant
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Figure 2. Marmousi acoustic model. (a) Velocity model. (b) Density
model.
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Figure 3. Marmousi migration velocity model used in example 1.
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was found by minimizing the least-squares difference of the ampli-
tudes between the reconstructed shot gathers and the original shot
gathers. Figure 5d shows the difference between the original shot
gather and the reconstructed shot gather of Figure 5c. As the figure
shows, there are some differences between the reconstructed shot
gather and the original shot gather. These differences seem to be
located in the low and high ends of the temporal frequency spectrum
(see also Figure 6), and they might decrease by running more iter-
ations of steepest descent. However, after nine iterations, the change
in the objective function with iterations is very small. It is possible
that a better result can be achieved by using a more efficient opti-
mization algorithm, such as the conjugate gradient method or
the limited-memory Broyden–Fletcher–Goldfarb–Shanno algo-
rithm (L-BFGS) method (Nocedal and Wright, 2000), or by includ-
ing a preconditioner.
Figure 6 shows a comparison of traces from the original data and

from the demigrated data after one iteration and after nine iterations
of demigration. The results show that the kinematics of the data are
well reconstructed already after one iteration, and after nine itera-
tions, the data amplitudes are getting closer to the ones in the origi-
nal data, as can be seen in the comparison of the time traces
(Figure 6a–6c), as well as in the comparison of the amplitude spec-
tra (Figure 6d).
For comparison, we repeat the above example, but this time using

only the zero-lag image; that is, we are interested in comparing the
results of using an extended imaging condition against those ob-
tained when only using the classical crosscorrelation imaging con-
dition. Figure 7a and 7b shows, respectively, the original shot gather
at position 6.33 km and a shot gather at the same position, but ob-
tained by demigration of the zero-lag image. For comparison,
Figure 7c shows the result of demigration using the extended image.
Both demigrated gathers correspond to the results of demigration
after nine iterations. The figure clearly shows that, due to the
errors in the velocity model, demigration of the zero-lag image
is unable to fully reconstruct the kinematics of the data. The main
reason for this is because the velocity model is inaccurate, signifi-
cant energy is migrated out of the zero lag and is made unavailable
for demigration.

Example 2

In the second example, we explore the appli-
cation of demigration to interpolation of data.
The ability of demigration to interpolate reflec-
tion seismic data comes from the fact that, in
the process of migration and demigration, the
Huygens-Fresnel principle is applied two times:
once during extrapolation from the receivers to
the image points and another time during extrapo-
lation from the image points back to the receivers.
In addition, in migration, redundant information
contained in the reflection data is gathered at the
imaging points and can be used to fill in gaps left
by incomplete seismic data acquisition. A similar
type of data reconstruction is presented by Nem-
eth et al. (1999) in the context of LSM.
To illustrate the application of demigration to

data interpolation, the Marmousi data of the pre-
vious example are decimated by only taking
every eighth receiver. The resulting receiver

interval of 0.2 km introduces severe dip aliasing in the seismic data
recording (Figure 8). For reasons that will become clear later, we
use a more accurate migration velocity model to migrate the data in
this example. The migration velocity model used is shown in
Figure 9. The model is obtained through wave-equation-migration
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Figure 4. Marmousi migrated (a) zero-lag image and (b) CIGs at
several selected spatial positions. In the CIGs, the half-offsets range
between –1.56 and 1.56 km.

a)

Offset (km)

T
im

e 
(s

)

x = 7.83 km

0 2 4

0

0.5

1

1.5

2

2.5

3

b)

Offset (km)

T
im

e 
(s

)

x = 7.83 km

0 2 4

0

0.5

1

1.5

2

2.5

3

c)

Offset (km)

T
im

e 
(s

)

x = 7.83 km

0 2 4

0

0.5

1

1.5

2

2.5

3

d)

Offset (km)

T
im

e 
(s

)

x = 7.83 km

0 2 4

0

0.5

1

1.5

2

2.5

3

Figure 5. Marmousi shot gathers at source position 7.83 km; (a) original, (b) recon-
structed after one iteration of demigration, (c) reconstructed after nine iterations of demi-
gration, and (d) difference between shot gathers (a and c).
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velocity analysis (Weibull and Arntsen, 2013), using the model in
Figure 3 as a starting model. In building the CIGs, we use 121 hori-
zontal half spatial lags in the imaging condition, which gives a half-
offset vector ranging between −0.75 and 0.75 km.

Migration using the decimated data results in CIGs such as the
one shown in Figure 10b. The energy in the CIG that is outside the
black dotted lines represents the migrated aliased events. This can
clearly be concluded after comparing this CIG with the one in
Figure 10a, which was migrated with the original nondecimated
geometry.
To interpolate the decimated shot gathers to the same geometry of

the original data, during gradient computation (equation 6) the data
are acquired using the same geometry as the nondecimated data.
First, we try to reconstruct the data using the CIGs without any
modification. For obvious reasons, if we use the decimated data
as a starting point for demigration, the residual would be zero
and the objective function would have been minimized. So, here,
similar to the first example, we start with a collection of zeroed
traces and rely on the CIGs to reconstruct the data. The results
of demigration after five iterations on a particular shot gather are
shown in Figure 11b. The results show that demigration partially
interpolates the decimated data, which now starts to resemble
the nondecimated data, shown in Figure 11a. However, the
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Figure 6. Comparison of traces of the Marmousi shot gather at
source position 7.83 km; (a) at zero offset, (b) at 1.65-km offset,
and (c) at 3-km offset. (d) Comparison of amplitude spectra aver-
aged over all traces of the shot gather.
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Figure 7. Marmousi shot gathers at source position 6.33 km;
(a) original, (b) reconstructed from the zero-lag image after nine
iterations of demigration, (c) reconstructed from the extended image
after nine iterations of demigration.
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Figure 8. Original shot gathers; (a) nondecimated (0.025-m
receiver interval) and (b) decimated by taking only every eighth
trace (0.2-m receiver interval).
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Figure 9. Marmousi migration velocity model used in example 2.
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reconstructed data have artifacts in the form of collapsed diffrac-
tions. These imaged diffractions appear at the edges of the gaps
in the decimated data.
To avoid these artifacts in the reconstructed data, we propose to

mute the aliased energy in the CIGs before doing the demigration
(Figure 10c). It is important that we are able to remove the aliasing
artifacts without losing important reflection data information. When
using a mute, the only way to achieve that goal is to use a migration
velocity model that focuses the reflection energy in the region of the
CIGs that is unaffected by the aliasing. This is the reason why we
need to use a more accurate migration velocity model in this exam-
ple than we used in the previous example. This allows us to choose a
mute that removes most of the aliased energy while preserving the
reflection information. The effect of aliasing is almost independent
of the CIG position, which allows us to pick only one mute and use
it for all CIGs. The chosen mute has a triangular shape and is de-
fined by only three points; this is because the effect of aliasing is
closer to zero lag at the shallow parts of the CIGs and almost lin-
early moves out toward higher lags with depth. The mute is applied
with a short taper to prevent hard truncation, although the effect of
having a hard mute has not been investigated. After muting, we
demigrate the muted CIGs, acquiring the data at the original
receiver geometry. The results of demigration of the muted CIGs
after five iterations are shown in Figure 11c. The artifacts present
in the case of demigration with the unprocessed CIGs are now
greatly reduced, and the reconstructed shot gather compares more
favorably with the original nondecimated shot gather shown in
Figure 11a. Figure 11d shows the difference between the original
nondecimated shot gather and the interpolated shot gather of
Figure 11c. This figure shows that the reconstructed shot gather
is approximately in phase with the original shot gather; however,
given the approximate nature of this interpolation method, some
difference is to be expected.
We observe that due to the smaller fold of the stack of the image

constructed with the decimated data, the amplitudes of the recon-
structed data will tend to converge to different values (about eight
times smaller in this case) from those of the original data. Also, as
mentioned, this procedure depends on having a migration velocity
model that will focus the energy within the non-
aliased part of the CIGs, that is, inside the black
dotted lines indicated in Figure 10b. Otherwise,
vital parts of the data may be muted together with
the aliased energy. Despite these limitations, this
type of reconstruction can find useful application
in interpolating irregularly sampled aliased data,
where most classical methods fail (Zwartjes and
Sacchi, 2007).
It is also possible to use this procedure to in-

terpolate across shot gathers. This can be
achieved in exactly the same way as above,
but by using reciprocity (Ikelle and Amundsen,
2005) and demigrating common receiver gathers,
instead of common shot gathers.

Example 3

We now present an application of the demigra-
tion method to free-surface-multiple attenua-
tion. The migration velocity model is shown in
Figure 12. We migrate the data using a grid cell

size of 0.0062 by 0.0062 km in the x- and z-directions. The maxi-
mum time used in modeling is 1.5 s. The time step size used is 1 ms,
and the wavefields used for the imaging condition are sampled
every 4 ms. We use monopole point sources with a 30-Hz Ricker
wavelet as source functions. We use 81 horizontal half spatial lags
for the imaging condition, which give a range between −0.25 and
0.25 km for the half-offset vector. The migrated stacked image and
CIGs are shown in Figure 13.
To remove the multiples, we explore a particular characteristic of

the behavior of multiples in images migrated using the spatial lag
extended crosscorrelation imaging condition. In these CIGs, free-
surface multiples and primaries can be separated by noting that
events requiring faster and slower velocities to be focused are
shifted in opposite directions relative to the zero lag. This behavior
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Figure 10. CIG at position 6.325 km migrated (a) with nondeci-
mated data, (b) with decimated data, before mute, and (c) with deci-
mated data, after mute to remove aliased events. The black dotted
lines in (b) mark the position of the picked mute. The same mute is
applied to all other CIGs. Note that after mute, the CIG migrated
with the decimated data better approximates the CIG migrated with
the full data.
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Figure 11. Shot gathers at position 7.83 km; (a) original, (b) reconstructed from the
CIGs migrated with the decimated data without the mute to remove aliased energy, (c) re-
constructed from the CIGs migrated with the decimated data with the mute to remove
aliased energy, and (d) difference between shot gathers (a and c). Both reconstructed
shot gathers correspond to the results after five iterations of demigration.
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is first pointed out by Mulder and van Leeuwen (2008) and later
explored by Weibull and Arntsen (2013) to attenuate multiples be-
fore automatic velocity analysis. The demultiple procedure consists
of muting the multiple events in the CIGs and reconstructing the
data using the demigration method presented in this paper.
Figure 14a shows one particular CIG at position 4 km, and

Figure 14b shows the same CIG after amplitude equalization.
The amplitude equalization consists of squaring the amplitudes
of the CIGs and normalizing them at each depth with the maximum
squared amplitude value for that depth. The amplitude equalization

is for visualization purposes because it helps in distinguishing be-
tween individual events in the CIG. This is useful for picking a mute
to remove the free-surface-related multiple events in the CIGs, as
we describe below. In Figure 14, the black dotted lines mark the
position of the zero horizontal lag. Note that the events to the right
of the black dotted lines represent events that require lower velocity
for focusing. Here, we assume that the migration velocities are ap-
proximately accurate for focusing the primaries. Therefore, the
events to the right of the strong events at the zero lag in the CIGs
are interpreted as multiples and thus need to be muted.
Ideally, the mute needs to be picked exactly in between the pri-

maries and the multiples as to preserve most of the primary energy
and remove most of the multiple energy. Because our migration
velocities are only approximately accurate, the primaries are not ex-
actly lined up with the zero lag in all positions, and we need to apply
a different mute to each CIG. To avoid picking a mute at every CIG,
we manually pick mutes every 0.62 km (on every 100th CIG), and
interpolate in between. Figure 14c shows the CIG at position 4 km
after the mute is applied to it.

Position (km)

D
ep

th
 (

km
)

2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

V
el

oc
ity

 (
km

/s
)

1.5

1.6

1.7

1.8

1.9

2

2.1

Figure 12. Migration velocity model for North Sea field data set.
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Figure 13. North Sea field data migrated; (a) zero-lag image and
(b) CIGs at selected spatial positions. In the CIGs, the half-offsets
range between −0.25 and 0.25 km
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Figure 14. North Sea field data CIG at position 4 km; (a) original,
(b) after amplitude equalization (see text for details), and (c) after
mute to remove free-surface multiples.
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Figure 15. North Sea field data shot gathers at position 5.5 km;
(a) original, (b) after 50 iterations of demigration of the muted CIGs,
and (c) the difference between shot gathers (a and b).
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After muting the CIGs, we run 50 iterations of demigration, using
the original multiple-rich shot gathers as a starting point for the in-
version. Figure 15a shows one of the original shot gathers that were
used to generate the CIGs and also as a starting point for the inver-
sion. Figure 15b shows the result of demigration of the muted CIGs
on a particular shot gather at the same position. Finally, Figure 15c
shows the difference between the original and demigrated shot gath-
ers. As can be clearly seen, the free-surface-related multiple events
that were muted in the CIGs are attenuated in the demigrated shot
gather.

CONCLUSION

We presented a method to reconstruct seismic reflection data
from modified stacked CIGs constructed through RTM with an ex-
tended imaging condition. The method is based on least-squares
inversion, and it is solved iteratively using a steepest-descent
approach.
The numerical examples show that the extended imaging condi-

tion allows good reconstruction of the prestack seismic reflection
data after only a few iterations. The presented method has many
interesting applications, such as image-space multiple removal
and data interpolation. In addition to this, because the method is
based on RTM, it can be applied to process data acquired over com-
plex geologic media.
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